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Motivation: Many of the applications and tools to be deployed on future exascale systems, comprised of millions of
cores and billion-way parallelism, will be characterized by dynamic computation and communication workloads. For
example, many scientific applications, such as molecular dynamics codes, particle in cell codes, fluid dynamics codes
and general finite element methods on irregular objects codes [14, 12, 4], compute on irregular data structures and with
dynamic communication patterns. These irregular data structures, which include unbalanced trees and graphs and un-
structured grids lead to dynamic scheduling and load balancing challenges [15]. Similarily, tools for performance
analysis, debugging and resource management dynamically vary their dataflow workloads and the analyses on these
flows based on the specific task at hand. Such dynamic communication patterns generally lead to different execution
phases; across these phases workload characteristics and requirements often change. These include changes in com-
munication groups and patterns, payload sizes and computational complexity. Such dynamicism suggests dynamic
adjustments to the way resources are mapped to the application or even changes in the number of resources allocated
to the application. Additionally, expectedly high failure rates on next generation systems suggest that as components
fail and recover, runtime systems must be able to dynamically shrink and grow allocations.

Our Position and Approach: We believe that autonomous operation will be a key component in the efficient, scalable
and robust operation of future HPC systems. An autonomous systems is generic, self monitoring, self (re)configuring,
self healing and self optimizing. Such operation will be necessary to manage the volumes of data to be analyzed and
the large numbers of components to be managed on future systems: management strategies that rely on on human
involvment simply will not work.

Our primary goal is to develop scalable mechanisms that allow exascale applications and tools to execute efficiently
and effectively without reliance on human intervention and expertise. We also will investigate new runtime system
strategies necessary to support dynamic application workloads and characteristics and dynamic resource demands and
availabilities. More specifically, our aims are:

• To design and evaluate mechanisms for scalable, autonomous middleware for communication and data aggre-
gation. These mechanisms will be responsible for

– sensing and monitoring dynamic environmental characteristics including available resources and data
workload intensity,

– detecting when functional or performance problems arise,
– deciding what actions if any should be taken to address the problems,
– and instantiating the actions.

• To design and evaluate a framework based on autonomous components for efficient deployment of irregular
applications at extreme scales; and

• To engineer practical, portable solutions of our ideas for empirical evaluation and broader use by the community.

Our approach has two primary prongs:

1. We propose to develop scalable, dynamic autonomous mechanisms for identifying and instantiating near opti-
mal resource allocations and task/resource mappings. These mechanisms will monitor health and performance
characteristics, diagnose performance and functional problems, evaluate remedial actions and their costs and
benefits, and instantiate prescribed remedies.

2. We propose a new resource management paradigm that improves resource usage by dynamically migrating
resources back and forth between user application sessions and the general resource pool depending upon user
demand, dynamic workload properties and resource availability. Our autonomous components will serve as
the basis for our new runtime system by dynamically determining exactly how much resources are needed by
application sessions and how to efficiently use the allocated resources.



The challenges in this work include designing and developing techniques for detecting, diagnosing and correcting
performance failures that are accurate, effective and lightweight enough to be run alongside the primary application or
tool without overly consuming its resources. To date, we have begun preliminary investigations of both the modeling
and performance prediction aspects of tree-based overlay network performance and understanding the impact of virtual
to physical topology mappings. We have also built all the necessary components to effect topology changes in the
MRNet TBŌN prototype – this work was done as part of a project to make MRNet robust to process and node failures.

Related Work: Generally, there is little research in high-performance computing systems that focus on the use of
autonomous concepts for addressing performance issues. The most closely related project is the Charm++-based
Adaptive MPI (AMPI) project [8] which uses process and thread migration to achieve dynamic load balancing. AMPI
is a implementation of virtual MPI processes, which are transparently mapped onto physical processors. By abstracting
the location of processes away from the physical implementation, AMPI is able to dynamically adjust processor load
balancing as well as the ratio of communication to computation. AMPI has a rich set of mechanisms, including
MPI process virtualization and migration, to support dynamic runtime behavior. The fundamental difference between
AMPI’s strategy and our approach is that task are re-arranged based on automatic CPU load balancing strategies. We
target automatic diagnosis and correction of communication performance problems. Additionally, we will explore
topology reconfigurations – akin to “connection migrations” – as well as task migration.

There are many motivating studies and research projects that demonstrate the impact of topology aware mappings
for improving the performance of HPC applications, for example, recent studies for IBM and Cray supercomputers [7,
2, 3, 5, 9, 11, 6]. A variety of mapping strategies have been explored from simulated annealing to graph contraction
and even genetic algorithms. In general, previous approaches have concentrated on latency optimizations often in
application and system specific ways. Furthermore, some of these techniques assume that application instances are
allocated contiguous portions of a system. This proposed research additionally focuses on communication bandwidth
and network contention issues.

Assessment:

• Challenges addressed: This work addresses the challenges of dynamic, scalable and efficient runtime systems
for extreme scale applications and tools.

• Maturity: The most mature work in this area is Charm++, which has demonstrated the utility of dynamic load
balancing strategies in contexts similar to ours. We also have demonstrated the feasibility of dynamic overlay
network reconfigurations albeit in the context of fault tolerance. We have begun preliminary work on the tree-
based performance models, which show the ability to accurately model and predict performance. To the best of
our knowledge, the additional areas of autonomous overaly network operation are unexplored.

• Uniqueness: Exascale systems pose the unique challenge of unprecedented system scales that dramatically
exacerbate the need for lightweight fault-tolerance techniques.

• Novelty: To the best of our knowledge, there is no work that attempts completely autonomous overlay network
management to respond to both performance and functional component failures.

• Applicability: This line of research could be useful in all high-performance computing areas, from petascale on
up. In general, the approaches are also useful beyond the HPC domain.

• Effort: This is a multi-year effort that entails both modeling and conceptualization analysis in the early years
and infrastructure development and empirical validations in the out years.
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